Regulation of 4CL, encoding 4-coumarate: coenzyme A ligase, expression in kenaf under diverse stress conditions
نویسندگان
چکیده
We cloned the full length 4CL ortholog encoding 4-coumarate:coenzymeA ligase from kenaf (Hibiscus cannabiuns, GenBank Accession No. JX548316) using degenerate primers and RACE (rapid amplification of cDNA ends) method. The 4CL is a key regulatory enzyme of the phenylpropanoid pathway that regulates the activation of cinnamic acid, leading to the synthesis of flavonoids and lignin. The 1,704-bp full length of 4CL ortholog had a 1,623-bp open reading frame (ORF) encoding a predicted protein of 540 amino acids. The predicted molecular weight and isoelectric point (pI) of the deduced protein was 59.56 kDa and 6.58, respectively. The sequence of the deduced amino acid shared 57-79% identities with other 4CL sequences. 4CL ortholog had two conserved putative AMP (adenosine monophosphate)-binding motifs, the SSGTTGLPKGV and GEICIRG domains. A BlastP analysis showed that kenaf 4CL ortholog showed 79% identity with ri4CL2 of Rubus idaeus (AAF91309), which is a class I 4CL involved in lignin synthesis. 4CL ortholog showed differential expression in all tissues during the developmental stages and was highly expressed in stem and root tissues. However, the lowest expression of 4CL ortholog was observed in leaf and mature flower tissues. 4CL ortholog was responsive to various stress conditions in the stem tissues of 3-week-old kenaf plants. Wounding caused biphasic expression at 6 h and 24 h after treatment. Taken together, the results of this study contribute to the knowledge of the presence of 4CL ortholog and its possible role in lignin biosynthesis, as well as its differential expression during developmental stages.
منابع مشابه
Expression of 4 Genes in Ocimum basilicum and their Relationship with Phenylpropanoids Content
Recent data showed that phenylpropanoid compound, methylchavicol is essential component of Iranian cultivars of basil. Studying their occurrence during development of plant may help to elucidate the role of phenylpropanoids in plant cell physiology. We followed the phenylpropanoids concentration and the expression of genes related to their biosynthesis during growth and development of two culti...
متن کاملPositive selection drives adaptive diversification of the 4-coumarate: CoA ligase (4CL) gene in angiosperms
Lignin and flavonoids play a vital role in the adaption of plants to a terrestrial environment. 4-Coumarate: coenzyme A ligase (4CL) is a key enzyme of general phenylpropanoid metabolism which provides the precursors for both lignin and flavonoids biosynthesis. However, very little is known about how such essential enzymatic functions evolve and diversify. Here, we analyze 4CL sequence variatio...
متن کاملTwo divergent members of a tobacco 4-coumarate:coenzyme A ligase (4CL) gene family. cDNA structure, gene inheritance and expression, and properties of recombinant proteins.
Several cDNA clones encoding 4-coumarate:coenzyme A ligase (4CL) were isolated from a tobacco (Nicotiana tabacum) cDNA library and grouped into two classes. Sequencing of one cDNA from each class showed that the clones were similar to other 4CL genes and about 80% identical with each other. Genomic Southern blots using DNA from Nicotiana sylvestris, Nicotiana tomentosiformis, and N. tabacum dem...
متن کاملIdentification of 4CL Genes in Desert Poplars and Their Changes in Expression in Response to Salt Stress
4-Coumarate:CoA ligase (4CL) genes are critical for the biosynthesis of plant phenylpropanoids. Here we identified 20 4CL genes in the genomes of two desert poplars (Populus euphratica and P. pruinosa) and salt-sensitive congener (P. trichocarpa), but 12 in Salix suchowensis (Salix willow). Phylogenetic analyses clustered all Salicaceae 4CL genes into two clades, and one of them (corresponding ...
متن کاملCloning and Functional Characterization of Two 4-Coumarate: CoA Ligase Genes from Selaginella moellendorffii.
Selaginella is an extant lycopodiophyte genus, which is representative of an ancient lineage of tracheophytes. The important evolutionary status makes it a valuable resource for the study of metabolic evolution in vascular plants. 4-coumarate: CoA ligase (4CL) is the pivotal enzyme that controls the flow of carbon through the phenylpropanoid metabolic pathway into the specific lignin, flavonoid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013